- Leman, J. T., Roman, H. A. & Barron, A. R. (1992). J. Chem. Soc. Dalton Trans. pp. 2183-2191.
- Neidle, S. & Wilman, D. E. V. (1992). Acta Cryst. B48, 213-217.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
- Rapta, P., Omelka, L., Stasko, A., Dauth, J., Deubzer, B. & Weis, J. (1996). J. Chem. Soc. Perkin Trans. 2, pp. 255–261.
- Samanta, C., De, P. K., Sarkar, S. B., Saha, S. C. & Talapatra, S. K. (1985). Acta Cryst. C41, 142-144.
- Samanta, C., Saha, S. C. & Mukherjee, A. K. (1997). Acta Cryst. C53, 1657-1658.
- Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
- Smith, R. H. Jr, Wladkowski, B. D., Herling, J. A., Pfaltzgraff, T. D., Pruski, B., Klose, J. & Michejda, Ch. J. (1992). J. Org. Chem. 57, 654–661.
- Wilman, D. E. V. (1988). Cancer Treat. Rev. 15, 69-72.
- Zsolnai, L. (1995). ZORTEP. An Interactive ORTEP Program. University of Heidelberg, Germany.

large quantities of sultone by-product as to require the development of an alternative synthetic route (Morris & Murray, 1975). The sultone arising from unsubstituted camphene, (1*a*), was assigned structure (3) by Lipp & Holl (1929). Subsequently, a systematic investigation of the reaction led to the revised structure, (4); the configuration at the C atoms common to the sultone and norbornane residues was not specified, and could be either both *exo*, as shown, or both *endo* (Asahina & Kawahata, 1939; Asahina *et al.*, 1938).

Acta Cryst. (1998). C54, 1546-1548

A Sultone Derived from Racemic Camphene

KENNETH W. MUIR,^{*a*} COLIN S. RODGER,^{*a*} DAVID G. MORRIS^{*a*} AND KARL S. RYDER^{*b*}

^aChemistry Department, University of Glasgow, Glasgow G12 8QQ, Scotland, and ^bChemistry Department, University of Aberdeen, Aberdeen AB24 3UE, Scotland. E-mail: k.muir@chem.gla.ac.uk

(Received 13 March 1998; accepted 28 April 1998)

Abstract

A controversy about the structures of five-membered ring sultones obtained by treatment of camphenes with acetic and concentrated sulfuric acids has been resolved by X-ray analysis of the sultone obtained from racemic camphene, namely, *endo-3H-10,10-dimethyl-4-oxa-5-thiatricyclo*[$5.2.1.0^{3,7}$]decane *S,S-dioxide*, (also known as 10-bornanesulfonic acid 2-hydroxy- γ -sultone), C₁₀H₁₆O₃S. Five-membered saturated sultone rings are shown to be conformationally flexible.

Comment

1-Substituted camphenes, (1), are convenient starting materials for the synthesis of 4-substituted camphors, (2) (Berson, 1963). However, this transformation, which involves treatment of (1) with acetic acid dissolved in concentrated sulfuric acid, on occasion gives rise to such

© 1998 International Union of Crystallography Printed in Great Britain – all rights reserved We have, therefore, subjected the sultone formed from camphene, (1a), to single-crystal X-ray analysis. Racemic (1a) was used as the starting material because a racemization step, which is not always complete, is almost certainly involved in the formation of the sultone. The molecule (Fig. 1) has structure (3), as proposed by Lipp & Holl (1929). It seems likely that substituted camphenes, such as (1b) or (1c), also give rise to sultones like (3), rather than (4), and that the suggestions of Asahina (Asahina & Kawahata, 1939; Asahina *et al.*, 1938) should be disregarded.

Bond lengths in (3) (Table 1) show deviations of up to 0.03 Å from standard values. Thus, the staggered conformation across C1—C7 [1.556(2)Å] leads to a

Fig. 1. A view of the title sultone molecule, (3), showing 50% probability ellipsoids. H atoms are shown as spheres of arbitrary radii.

Acta Crystallographica Section C ISSN 0108-2701 © 1998 bond which is slightly shorter than the mean of 1.588 Å proposed for C_3C — CC_3 bonds by Orpen *et al.* (1992; hereafter O92). The eclipsed conformation across C5-C6 [1.554(2) Å] stretches the bond slightly (cf. 1.524 Å in O92). In the sultone ring, S1-O3 [1.590(1)A] and S1-C10 [1.787(1)Å] are slightly longer than the O92 values of 1.577 and 1.745 Å, respectively; the S1-C10 distance is, however, typical of values in saturated five-membered SOC₃ sultone rings [mean 1.795 Å for nine such rings the Cambridge Structural Database (CSD) (Allen & Kennard, 1993); refcodes for SOC₃ sultone rings are CERPEU, FINLOO, FINLUJ, FORGUO, KUGDIZ, PHOXTL, WIKFOL and ZIZTOR (twice)]. Many of the 72 cyclic and acyclic sultones in the CSD contain terminal S-CH₃ bonds, which may be subject to appreciable librational shrinkage, and they give rise to a mean S— C_{sp^3} distance of 1.760 Å, which is shorter than the value typical of cyclic sultones.

For the nine five-membered saturated sultone rings in the CSD, the Cremer & Pople (1975) puckering parameters are Q = 0.37 - 0.50 Å and $\varphi = 17 - 72^{\circ}$, indicating considerable conformational flexibility. In (3), this ring is slightly less puckered than usual [Q =0.372 (1) Å and $\varphi = 51.8 (2)^{\circ}$], indicating a near-perfect half-chair ($\varphi = 54^{\circ}$), with the pseudo- C_2 axis running through C10 and the centroid of C2-O3 (see Table 1 for the ring torsion angles).

The anomalously high rates of alkaline hydrolysis of five-membered rings containing a sulfur ester group have been explained, at least in part, in terms of repulsive interactions between the lone pairs of the ring O atom and the exocyclic S=O bonds (Boer & Flynn, 1969). Although some relief of these interactions in (3) is achieved by the deviation from zero of the endocyclic C—S—O—C torsion angle $[-31.3(1)^{\circ}]$, the conformational flexibility of such rings in general is illustrated by corresponding torsion angles in the range $3-37^{\circ}$ for the nine saturated SOC₃ sultone rings in the CSD (Allen & Kennard, 1993).

The title compound packs in the moderately unusual space group P2/a (alternative setting of P2/c), with a mean atomic volume (ignoring H) of 19.0 Å³. Unsurprisingly, there are no unusually short intermolecular distances. The largest departures from the rigid-bond test of Hirshfeld (1976) relate to the gem-dimethyl group $[\Delta U = 0.0030 (12) \text{ Å}^2 \text{ for the C7-C9 bond}].$

Experimental

Application of the procedure of Asahina & Kawahata (1939) to racemic (1a) produced a sultone, (3) (m.p. 406 K). Crystals suitable for X-ray analysis were grown from ethyl acetate. NMR spectra of solutions of (3) in CDCl₃ were measured on a Bruker AM-360 spectrometer. ¹H and ¹³C chemical shifts in p.p.m. were referenced to chloroform at 7.25 and CDCl₃ at 77.00, respectively. ¹H NMR: 0.94 (3H, s), 1.12 (3H, s), 3.19 (1H), 3.26 (1H, AB quartet, J = 13.70 Hz), 4.39 (1H, dd, J = 7.92 and 3.52 Hz); ¹³C NMR: 19.82 (CH₃), 19.90 (CH₃), 26.71 (CH₂), 29.07 (CH₂), 35.81 (CH₂), 44.38 (CH), 47.41 (C), 49.07 (CH₂), 55.49 (C), 87.90 (CH).

Crystal data

$C_{10}H_{16}O_3S$	Mo $K\alpha$ radiation		
$M_r = 216.29$	$\lambda = 0.71073 \text{ Å}$		
Monoclinic	Cell parameters from 25		
P2/a	reflections		
<i>a</i> = 10.5933 (6) Å	$\theta = 20.8 - 24.3^{\circ}$		
b = 8.8517(7) Å	$\mu = 0.284 \text{ mm}^{-1}$		
c = 11.3495 (6) Å	T = 287 (2) K		
$\beta = 91.606 (4)^{\circ}$	Plate		
$V = 1063.81 (12) \text{ Å}^3$	$0.38 \times 0.38 \times 0.10$ mm		
Z = 4	Colourless		
$D_x = 1.350 \text{ Mg m}^{-3}$			
D_m not measured			

Data collection Enraf-Nonius CAD-4 $R_{\rm int} = 0.014$ diffractometer $\theta_{\rm max} = 30^{\circ}$ $\omega/2\theta$ scans $h = -14 \rightarrow 14$ Absorption correction: $k = -12 \rightarrow 1$ $l = -15 \rightarrow 2$ Gaussian (Spek, 1997) $T_{\rm min} = 0.889, T_{\rm max} = 0.970$ 3 standard reflections 3997 measured reflections 3096 independent reflections 2321 reflections with $I > 2\sigma(I)$

Refinement

Refinement on F^2	$(\Delta/\sigma)_{\rm max} < 0.001$
$R[F^2 > 2\sigma(F^2)] = 0.035$	$\Delta \rho_{\rm max} = 0.26 \ {\rm e} \ {\rm \AA}^{-3}$
$wR(F^2) = 0.110$	$\Delta \rho_{\rm min} = -0.20 \ {\rm e} \ {\rm \AA}^{-3}$
S = 1.008	Extinction correction:
3094 reflections	SHELXL93
130 parameters	Extinction coefficient:
H atoms riding	0.0034 (12)
$w = 1/[\sigma^2(F_o^2) + (0.0600P)^2]$	Scattering factors from
+ 0.1639 <i>P</i>]	International Tables for
where $P = (F_o^2 + 2F_c^2)/3$	Crystallography (Vol. C)

frequency: 120 min

intensity decay: none

Table 1. Selected geometric parameters (Å, °)

S1O2	1.4211 (12)	C1C7	1.556(2)
SI01	1.4229 (12)	C2—C3	1.527(2)
SI03	1.5903(11)	C3—C4	1.533(2)
SI-C10	1.7870(13)	C4—C5	1.540(2)
O3C2	1.462 (2)	C4—C7	1.545 (2)
C1—C10	1.525 (2)	C5—C6	1.554 (2)
C1C6	1.534 (2)	C7—C9	1.529(2)
C1C2	1.543 (2)	C7—C8	1.532 (2)
02—S1—O1	118.09 (8)	O3-S1-C10	97.68 (6)
O2—S1—O3	109.26(7)	C2-03-S1	108.41 (8)
01—S1—03	106.03 (7)	C10-C1-C2	107.41 (10
02-S1-C10	109.72 (8)	C3C2C1	104.78 (11)
D1—S1—C10	113.91 (7)	C1C10S1	104.82 (9)
C10—S1—O3—C2	-31.32 (10)	C10-C1-C7-C4	169.28 (11
S1—03—C2—C1	41.66 (12)	C2-C1-C10-S1	11.42 (12)
CI0-CI-C2-O3	-32.58 (14)	03-S1-C10-C1	10.95 (10
C4-C5-C6-C1	-2.6(2)		

A single torsional parameter was refined for each methyl group. Otherwise, H atoms were placed in calculated positions, riding on their parent C atoms.

Data collection: CAD-4 EXPRESS (Enraf-Nonius, 1992). Cell refinement: CAD-4 EXPRESS. Data reduction: WINGX (Farrugia, 1996). Program(s) used to solve structure: SHELXS86 (Sheldrick, 1985). Program(s) used to refine structure: SHELXL93 (Sheldrick, 1994). Molecular graphics: ORTEP3 (Farrugia, 1997). Software used to prepare material for publication: WRITECIF (Pauson & Muir, 1996).

Supplementary data for this paper are available from the IUCr electronic archives (Reference: CF1262). Services for accessing these data are described at the back of the journal.

References

- Allen, F. H. & Kennard, O. (1993). Chem. Des. Autom. News, 8, 31-37.
- Asahina, Y. & Kawahata, H. (1939). Ber. Dtsch Chem. Ges. 72, 1540– 1550.
- Asahina, Y., Sano, T. & Mayekawa, T. (1938). Ber. Disch Chem. Ges. 71, 312-318.
- Berson, J. A. (1963). Molecular Rearrangements, edited by P. de Mayo, pp. 111-231. New York: Interscience.
- Boer, F. P. & Flynn, J. J. (1969). J. Am. Chem. Soc. 91, 6604-6609.
- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1363. Enraf-Nonius. (1992). CAD-4 EXPRESS. Enraf-Nonius, Delft, The
- Netherlands. Farrugia, L. J. (1996). WINGX. A Windows Program Package for
- X-ray Analysis. University of Glasgow, Scotland.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Hirshfeld, F. L. (1976). Acta Cryst. A32, 239-244.
- Lipp, P. & Holl, M. (1929). Ber. Dtsch Chem. Ges. 62, 499-504.
- Morris, D. G. & Murray, A. M. (1975). J. Chem. Soc. Perkin Trans. 2, pp. 539–541.
 Orpen, A. G., Brammer, L., Allen, F. H., Kennard, O., Watson, D. G.,
- & Taylor, R. (1992). International Tables for Crystallography, Vol. C, pp. 714–778. Dordrecht: Kluwer Academic Publishers.
- Pauson, A. & Muir, K. W. (1996). WRITECIF. A Program for Preparing CIFs. University of Glasgow, Scotland.
- Sheldrick, G. M. (1985). SHELXS86. Crystallographic Computing 3, edited by G. M. Sheldrick, C. Kruger & R. Goddard, pp. 175–189. Oxford University Press.
- Sheldrick, G. M. (1994). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
- Spek, A. L. (1997). PLATON97. Molecular Geometry Program. University of Utrecht, The Netherlands.

Acta Cryst. (1998). C54, 1548-1550

Gomisin N

Jaromír Marek^a and Jiří Slanina^b

^aLaboratory of Biomolecular Structure and Dynamics and Department of Inorganic Chemistry, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic, and ^bDepartment of Biochemistry, Faculty of Medicine, Masaryk University, Komenského nám. 2, 662 43 Brno, Czech Republic. E-mail: marek@chemi.muni.cz

(Received 11 December 1997; accepted 5 May 1998)

Abstract

The crystal structure of gomisin N (1,2,3,12-tetramethoxy-6,7-dimethyl-10,11-methylenedioxy-5,6,7,8tetrahydrodibenzo[*a*,*c*]cyclooctene, C₂₃H₂₈O₆) has been determined. The cyclooctene ring of the molecule has a twisted boat-chair conformation. The angle between the two phenyl rings is $60.6(11)^\circ$.

Comment

The title compound, (I), was originally isolated from the fruits of *Schisandra chinensis* Baill., a well known oriental medicinal plant (Ikeya *et al.*, 1979). Its structure was established by spectroscopic methods. Intense hepatoprotective action was found with gomisin N (Hikino *et al.*, 1984). In the course of our work on the biochemistry of natural lignans, we reisolated the title compound from the seeds of *Schisandra chinensis* (Lojková *et al.*, 1997; Slanina *et al.*, 1997).

The main part of the molecule is the cyclooctadiene ring, which possesses a twisted boat-chair conformation. The methyl group bonded to the cyclooctadiene ring at C7 is in a pseudo-axial position, while the methyl group bonded at C8 is in a pseudo-equatorial position. Two phenyl rings are connected to the eight-membered cycle. Both of these rings are relatively planar: the maximum deviations of best planes through atoms C10-C15, and C1-C5 and C16, are 0.01 (5) and 0.03 (2) Å, respectively (or 0.2 and 1.6, respectively, on a δ/σ scale). The angle between these planes is 60.6 (11)°. The